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A dynamical theory of Kikuchi patterns from thick crystals is developed, which takes into account the 
absorption of both the elastically and inelastically scattered electrons. The wave function describing the 
state of an inelastically scattered electron due to an elementary excitation of core electrons of the crys- 
tal atoms is calculated. The general formulae for the intensity of the pair of Kikuchi lines (hkl) and 
(hki) and bands are obtained. The intensity profiles of Kikuchi lines and bands are analyzed. For a 
thick crystal the 'defect' line contrast and band contrast are reversed as a result of anomalous absorp- 
tion of the inelastically scattered electrons. This is in accordance with observed experimental data. 

1. Introduction 

Since Kikuchi lines were discovered (Kikuchi, 1928) a 
number of investigations have been carried out to 
resolve the Kikuchi-pattern problem (Laue, 1935, 
1948; Lamla, 1938; Artmann, 1949; Fues & Riedel, 
1949; Kainuma, 1955; Takagi, 1958; Fujimoto & Kai- 
numa, 1963; Okamoto, Ichinokawa & Ohtsuki, 1971; 
Ishida, 1970, 1971). Evidently a complete theory must 
contain an adequate description of sufficiently com- 
plicated phenomena such as the different physical ori- 
gins of the inelastic scattering of a primary beam. It is 
necessary to consider the particular values of energy 
losses and electron angular distribution for each mech- 
anism of inelastic scattering, the subsequent propaga- 
tion of the inelastically scattered electrons in certain 
directions near the Bragg reflexion and the true dy- 
namical effects: many-beam scattering, 'Pendell6sung 
fringes', anomalous absorption etc. 

Further, the necessary condition for the develop- 
ment of a complete theory is the analysis of experi- 
mental data (Shinohara & Matsukawa, 1933; Boersch, 
1937; Pfister, 1953; Nakai, 1970; Watanabe, 1955; 
Raether, 1962; Meyer-Ehmsen, 1969; Ichinokawa, 
Kamigaki & Ohtsuki, 1969) which enables one to esti- 
mate the relative contributions of various physical 
effects to the geometry and intensity distribution of the 
Kikuchi patterns. The contrast reversal of Kikuchi 
bands observed by Shinohara & Matsukawa (1933), 
Boersch (1937), Pfister (1953) and Nakai (1970) is ex- 
perimental evidence that dynamical effects (anomalous 
absorption in particular) directly influence Kikuchi 
patterns. From experimental data (Watanabe, 1955; 
Raether, 1962; Meyer-Ehmsen, 1969; Ichinokawa, 
Kamigaki & Ohtsuki, 1969) it follows that inelastically 
scattered electrons with small energy losses (approxi- 
mately 0 up to 100 eV) contribute to Kikuchi-pattern 
formation. Kikuchi patterns are formed by inelastic 
scattering of the incident and diffracted electrons 
(waves) with a simultaneous change of the phonon, 
plasmon and core-electron excitation states of the crys- 
tal. Another characteristic of the processes under con- 

sideration is the creation of the wide fan of scattered 
particles (waves) in a crystal, which provides the large 
angular diffraction pattern. It seems reasonable that 
such a divergent beam cannot arise solely from single 
inelastic scattering with the energy losses mentioned 
above. 

The theory of Kikuchi lines was first proposed by 
Laue (1935, 1948). He used the reciprocity theorem for 
the explanation of Kikuchi patterns. Laue's original 
theory described correctly the geometrical position of 
Kikuchi lines but did not explain the black-white con- 
trast of pairs of lines or Kikuchi band formation. Ow- 
ing to this, Kainuma (1955) generalized the reciprocity 
theorem to the case of inelastically scattered electrons 
and applied it to determine the intensity distribution 
of Kikuchi lines and bands. Kainuma's theory quali- 
tively explained the Kikuchi patterns from a non-ab- 
sorbing crystal. The theory was further developed by 
Takagi (1958), Fujimoto et al. (1963), Okamoto et al. 
(1971) and Ishida (1970, 1971). 

As is shown by Takagi (1958), temperature diffuse 
scattering (one phonon process) gives rise to Kikuchi 
lines in the region of a Laue spot. 

Fujimoto et al. (1963) and Okamoto et al. (1971) 
analysed the relative contributions of phonon and plas- 
mon excitations, as well as the excitations of core 
electrons of the crystal atoms, to the Kikuchi patterns. 
[-or this, it was necessary to take into account ex- 
plicitly all elementary excitations in the corresponding 
interaction Hamiltonian of the 'incident electron-crys- 
tal', which might cause the inelastic scattering. For the 
mechanisms of inelastic scattering mentioned above 
numerical calculations of the Kikuchi pattern contrast 
from a Si single crystal (reflexion 220, energy 80 keV) 
were carried out. 

Bearing in mind the theoretical description of Kiku- 
chi patterns one has to point out two main failures of 
the existing theories. Firstly, nowadays there is no 
theory of Kikuchi pattern formation at large angles 
of incidence. Evidently such Kikuchi patterns are 
formed by the multiple scattering of incident electrons 
in a crystal. Secondly, there is no dynamical theory of 
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Kikuchi patterns which simultaneously takes into ac- 
count the coherent scattering and absorption both for 
the elastically and inelastically scattered electron waves. 
Ishida (1970, 1971, cf  Okamoto et al., 1971) con- 
sidered the absorption of electron waves inside a crys- 
tal by a method similar to the phenomenological cal- 
culation of absorption of the diffuse one-phonon scat- 
tered X-rays for the case of Laue diffraction (Afa- 
nas'ev, Kagan & Chukhovskii, 1968; Chukhovskii, 
1968a). As shown by Chukhovskii, this method does 
not enable one to describe the fine interference effects 
of inelastically scattered particles in a crystal. 

The purpose of the present paper is to give a dynam- 
ical theory of Kikuchi patterns taking into account the 
absorption of both elastically and inelastically scat- 
tered electrons. A set of dynamical equations is de- 
rived for elastic and inelastic electron waves, based on 
a generalization of the method developed by Afa- 
nas'ev et al. (1968) and Chukhovskii (1968a, b). The 
derivation is briefly presented in Section 2. Also in this 
section the wave function describing the state of an 
inelastically scattered electron due to an elementary 
excitation of core electrons of the crystal atoms is cal- 
culated. The general formulae for the intensity of the 
pair of the Kikuchi lines hkl and h/~] and bands are 
obtained (Section 3). The formulae can be easily gen- 
eralized for phonon and plasmon mechanisms of the 
inelastic scattering of electrons in a crystal. In Section 4 
the intensity of Kikuchi lines and bands is analysed and 
special attention is paid to the treatment of the Kiku- 
chi-pattern contrast depending on crystal thickness. 

The results obtained in the paper are assumed to 
describe correctly the intensity distribution of the Kiku- 
chi patterns for large angles with respect to the incident 
electron beam. 

2. Derivation of the general formulae 

The motion of an electron inside a crystal is governed 
by the Schr6dinger equation as follows: 

( -  he--fl--d + H e r + H i n t ) ~ t = E g t .  (2.1) 
2me 

Here H e r  , -h2A/2m~, H i n  t a r e  respectively the Hamil- 
tonians of a crystal, the electrons which fall upon and 
are scattered by the crystal, and 'electron-crystal' inter- 
action; E is the total energy of the entire system, rn~ is 
the electron mass; h is Plank's constant. 

The wave function of the entire system can be re- 
presented in the form 

~,= ~ ck~,~v,~lk)l{n~})l(n}). (2.2) 
k{ns} {n} 

In this expression [k) is the plane wave function 

[k) = V-~/z exp (ikr). 

(V is the crystal volume); I{n~}) is the eigenfunction 
of the phonon system being characterized by the set 

of the phonon occupation numbers {ns}; [{n}) is the 
eigenfunction of the electronic system with the occupa- 
tion numbers of the excited electronic states inside a 
crystal {n} which themselves can be divided into the 
excitations of the valence electrons and core electrons 
of crystal atoms. Notice that the multiplicative repre- 
sentation of the crystal eigenfunction I{ns}) ]{n}) is 
correct when the electron-phonon interaction inside a 
crystal can be neglected. 

The interaction Hamiltonian is made up of two 
parts, corresponding to the interaction of the incident 
electron with single individual atoms, r4(1) and va- .*a i n t ,  

lence electrons ~14(2)int (Chukhovskii, 1968a, b)" 

Hint r 4 . ) . . ( 2 )  (2.3) = .*a l n t  v .tJ i n t  • 

Here 

H ( , , -  r-r.) r-r(,) _ 4roe 2 ~ exp (ikr) 
t n t  - -  ~ - ~  a l n t  , a a  a i n t  . . . . . . . .  V-- -ff k 2 

a 

× (Za exp (-- ikRa-  ikua) 

- ~ exp [ -  ik(Ra + u~ + rba)]) (2.4) 
b 

H(2) 4~ze 2 ~ exp (ikr) 
lnt-  V k2 ~ exp ( -  ikrj) (2.5) 

where the following notations have been introduced: 
r is the position of the incident electron; Ra is the 
equilibrium position of the ath atom; u~ denotes the 
displacement due to vibrations; rba is the position of 
the bth electron inside the ath atom; rj is the position 
of the valence electron inside a crystal; Za is the atomic 
number of the ath atom; Ra = Rn + ~j, Rn is the posi- 
tion of nth elementary cell; 0j determines the position 
of the j th atom in the unit cell. 

In accordance with (2.3) the eigenfunction of the 
electronic system can be represented in the form of 
product of the eigenfunctions corresponding to the 
elementary excitation of the ath atom [Va) with the 
energy E, and valence electronic system [n) with the 
energy E,: 

[ (n))=ln)  II Ira). (2.6) 
a 

Now inserting (2.2) into (2.1) and utilizing (2.3)-(2.6) 
one finds the set of linked equations for the state am- 
plitudes c,,v,s~ ~,,~ (el e.g. Chukhovskii, 1968b): 

(E-Ek-Ecn,~)ckc,~)o=(V) -I ~ (Bin hk{ns}O ¢ • tlk'{n's}O k'{ns}O 
k ' { n ' s }  

+ ( V ) - I ~ .  ~.  ~ (H(1)Jnt)~l'~S!°s, vCrt,(n,s)av 
a k ' { n ' s }  v :P0  

+(V) -1 Z ~ (H'e"k° c " ~. i n t / k ' n  k'{ns}n, 
k '  n : / :0  

( E -  Ek-- E~,,~- E,)ck~,,~av 

1 -- ~ (H (1) "~k{ns}v c 
-- --V ~ ~. a int]k(n's}O k ' { n ' s } 0  

k ' { n ' s }  

1 
k ~a b t n t ] k ' { n ' s }  Ck ' {n ' s }av  

k ' { n ' s }  



40 D Y N A M I C A L  T R E A T M E N T  OF K I K U C H I  P A T T E R N S  

1 +-~ 

1 

+T 
1 

+T 

~. ~ :H (1) ' lk{ns}V C 
k a i n t ] k ' { n ' s } V "  k ' { n ' s } a v '  

k ' { n ' s }  v ¢ O  

~ ( H  (2)'~kO C 
\ i n t / k ' n  k ' { n s } a v n  

k ' n  

2; Y- 7 k b l n t ) k '~n ' s }V"  k ' { n ' s } a v b v ' ,  
b C a k ' { n ' s }  v" ¢ O  

( E - E r ,  

_ 1 
__ _.__ 

V 

1 

+v 

- E~.~ - E~ - E~,)cl,~,,~l.~b~, 

(I- / ( l )  " ~ k f n s ~ v "  ,,, 
\'*~ b i n t ) k ' { n ' s } O C k ' { n ' s } a v  

k'{n's} 

\ a int:k'ln's}O k ' { n ' s } b ~ '  -~- • " • ; 

k'/n's} 

( E -  Ek -- E~.s~ -- Ev - E.)ck~.~.~. 

_ 1 
- -  , , , \ a i n t l k ' l n ' s } v '  k ' { n ' s } a v n  Vk~insi~(H,l) , k { n s l V  C 

1 
+ - V  ~ (greek" c (2.7) \ int/k'n '  k ' { n s } a v n '  "q- . . . .  

k ' n '  

On the right hand side of these equations there are 
matrix elements of the 'electron-crystal' interaction 
Hamiltonian. The upper and lower indices of the 
matrix elements denote the final and initial state of the 
entire system. 

Below, we restrict ourselves to the case of the Kiku- 
chi pattern formation due to the single inelastic scat- 
tering of the incident electron beam on core electrons 
of the crystal atoms (the generalization of results for 
the cases of inelastic scattering due to the phonon and 
valence-electron excitations follows directly: of. e.g. 
Okamoto et al., 1971). Also, we shall neglect the back 
scattering of the inelastically scattered waves into the 
initial state, which actually means that the present 
problem can be solved by standard perturbation theory. 
This makes it possible to write down a separate set of 
dynamical equations for elastically and inelastically 
scattered waves. Successively omitting from equation 
(2.7) the scattering amplitudes with simultaneous 
change in the initial state of the crystal 

({n o } is the initial state of the phonon system) and pre- 
serving only terms of order of H~., we obtain 

( k°2 - 1 )  cko~.0,0+ ~ v(koko,)Cko,~.,oo=O (2.8) 
K 2 g ,  ' 

(k~_ ) Ck,ln°'av+ ~ V(kh,kn,)Ckh,,O,av= (2.9) 
K 2  h" 

= ~ v.v(kh,ko)c%l.°~o, 
o 

where 

2me 
v ( k , k ' ) = N o  ~ 2  [H~(k,k')+H2(k,k') 

+ H3(k, k') + Hr(k, k')] (2.10) 

8range 2 { ~  exp [- i (k-k ' ) rb , , ]} ;  
b a  

v,~(k,k') = Vh.Z .... ( k - k ' )  2 

x exp [ -  M , ( k -  k') + i (k ' -k )Ra] .  (2.11) 

Here M , ( k - k ' )  is the usual Debye-Waller factor; K~ 
the wave vector of the inelastically scattered electrons 
in vacuum, t c~=[2me(E-Ev-Eo,o) )] l /Z;  kh=k+Kh,  
where K~, is the reciprocal lattice vector multiplied by 
2rr; No = N / V ,  where N is a number of the crystal unit- 
cells; here and below we put Plank's constant h =  1. 

The complex coefficients H(k,k ' )  in parentheses in 
(2.10) describe the scattering and absorbing properties 
of the medium. Derivation and physical significance 
of the coefficients H~(k,k'), Hz(k,k'), Hr(k,k ' )  are 
given by Chukhovskii (1968b). H3(k,k') corresponds 
to the inelastic scattering of the incident electron with 
valence electron excitations and is equal to 

(2) k } (Hint)k. 10) H3(k,k')= ~ ~ , [-(-0l(Ht"t)k''l-n) (hi (2, k,, 
k" . .  o [ E -- E~,o ~ - E,, + ifi " 

6--+ + 0 (2.12) 

For further treatment the explicit form of the coef- 
ficients H(k,k ' )  is not essential, since for analysis of 
the profiles of Kikuchi lines and bands (see below) we 
shall use the well known values of the dynamical co- 
efficients (Hirsch, Howie, Nicholson, Pashley & Whe- 
lan, 1965) 

v(k,k') - Re v(k,k') + i hn v(k,k') ,  
Re v(k, k') > I m  v(k, k') > O. 

Here it should be mentioned that the thermal term 
Hr(k,k ' )  may result in an appreciable contribution of 
the electron-phonon scattering to an absorption of the 
incident electron beam (Chukhovskii, 1968b). 

Consider a platelike crystal of thickness t. The inten- 
sity of inelastically scattered electrons emerging from 
the crystal surface z=  t along the direction K~h ( K v h  is 
the wave vector of an electron in vacuum) is given by 

l ( K ~ h ,  t)= ~ I ¢ a K ~ h ( r , t ) [  2 (2.13) 
a 

where ~0aK,.h(r,t) is the wave function of an electron 
which suffers an inelastic collision at the ath atom 
inside a crystal. 

Taking into account the continuity of the tangential 
component of the electron wave vector at the exit sur- 
face of a crystal one can easily find 

~0aK~,,(r, t) 
= ~ Ckh~,,0~av exp [iK~l,r+iO~h--Kvh)nt] (2.14) 

[ r - (x ,  nz) and z_> t, n is a unit vector normal to the 
crystal surface]. The angular distribution of the in- 
elastically scattered electrons near the direction Kv~ is 
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the I(K,,, t) being multiplied by the two-dimensional 
state density 

2 ! ~(K,h)_ V drc,h~dt¢~ Vt¢ vh COS 0 
t (2ZC) 2 = t (2~Z) z df2z~ (2.15) 

and summarized over all excited states of individual 
atoms of a crystal v ~ 0. As a result one finds 

df2~ n 

v~. 2 
-~-~--(%, t)--  (2rc)z t ~a v~o ]~OaK,~ (r,t)l 2 • (2.16) 

(Kh is the average wave vector of inelastically scattered 
electron.) 

The expressions (2.14)-(2.16) as well as (2.8), (2.9) 
are initial ones for the solution of the problem of the 
transmission Kikuchi patterns in the Laue case. 

3. Calculation of the i n t e n s i t y  o f  the  i n e l a s t i c a l l y  
s c a t t e r e d  e l e c t r o n s  in  the  t w o - B e a m  a p p r o x i m a t i o n  

Let the plane monochromatic electron (wave) with 
wave vector K fall on the entrance surface of a crystal 
z=0 .  Let us restrict ourselves to the case when only 
two Bragg scattered waves with corresponding vectors 
K~ for elastic and K; for inelastic waves occur. Then, 
equations (2.8) and (2.9) can be reduced to two sets of 
two equations relating the amplitudes 

Cko{. ] ~0 = Cko, CU~,{. ° ~ a ,  - -  Ck,.h (g, h = O, 1) 

( -  2rio + Vo)Cko + v_ ~Ck~ = 0 

V~Cko + (--  2fi~ + V0)Ck~ = 0 

: v(O) ,, _L ,,(0) ,. (-- 2yO + V~)Ck,o + V'--~Ck,~ avo,..ko T V a v l t . k l  

v'~ Ckvo + (-- 2y, + Vo)Cu., -" (1 )"  "" ( ' )  " - -  Uav0t .k0  ~ -  U a v l t . k  • 

(3.1 a) 

(3.1b) 

Here the following notations have been introduced: 

(~0 1 
ko t = K o  t + K o  1 ~'" 9 ,  

' ' ' ~"0,1 

v(k, k + K 1 ) = v _ ~ ,  

70.~ =cos  (n,K0.t)~ 1 , 

(3.2a) 

v(k + K~, k) = v~, 

k,o,t=K,o,t+~:,o,t Y0.~ n ,  7o,~=cos (n,"K,0.~)----- 1 , 
~)0,1 

(3.2b) 

v (k ,+K; ,  k , ) = v l ,  v(k,, k , + K i )  =v '_ , ,  
P a v ( k h  ' IT "~ ~ ,~(h)  • Xg]  ~ t ,  a v g  . 

As is known from dynamical boundary diffraction treat- 
ment the amplitudes of elastically scattered waves are 
determined as follows: 

26~1, 2) 
a ( 1 , 2 )  __ - - / ) 0  C(11,2) 
~kO - -  

Vl 

c'~' + c '~ = 0  

c(~) +..~2) 1 
k 0  L'R0 ~ , 

(3.3) 

where 'anpassungs' .~a,2) are the solution of the disper- *"0,1 

sion equation corresponding to the set of equations 
(3.1a) and are equal to (c f  e.g. Hirsch et al., 1965): 

6 .  2) lm.. ~_  V'c~'+4v-lvl) 0 ' ~ g k z ' u 0 - -  ~ + 

2KK1 + K~ .~(t,2) _ .~(1,2) 0c (3 .4 )  
cz = tc 2 , ~'1 --~'o + ~ - -  

The amplitudes Ck,h are determined from (3.1b) and 
directly expressed in terms of the elastic wave am- 
plitudes 

Ckvh = 
~ ,  ..(h) r 2-  -- _ , ) [  o ° v g . ~ -  y . ,  +V'o) v'. "(~') -- h , t / a v g . t  

[(_  2yo + v'o)(- 2yl + v'o) - V'lV_ ~] c kg J " [ = ~  g ,1 z = l , 2  

(h--/=h') (3.5) 

Substituting (3.5) into (2.14) one easily finds the wave 
function ~0aKvh(r) corresponding to the motion of the 
scattered electrons along the direction K,h in vacuum 

,(h) (__2yh, WV'o)__,' ,,(h') t/  h - h , t / a v g r  
~0aKv~ (r)= 2 2 t~kg"(r' v a v g "  

. . k  vh o,~ [ ( -  2yo + v o)( -  2yl + Vo) - v'a v _  '1] 

× exp [iK,~X + ik ,h .  nz]. (3.6) 

Now making use of the relation 

kvhz = 1¢vhz + YhtCvh 

one can go from summation over n .  k,h to integration 
over Yh in (3.6). As a result we get 

tCvht 
~0aKvh(r) = ~ exp [iKvh(X + nz)] 

x ~ ~ko~c~) h exp (iK.hZyh) 
g, T: 

. ,~  r " "  + Vo ) -  v;, ' "~ ')  
X C a v g r k - - x " f h '  - - h  V a v g r  (3.7) 

4(yh-- a~") (y._ ~2)) 

To obtain (3.7) the following relations have been used 

( -2yo  + vo) ( - 2 y ,  + v i ) - v ' a v ' x  

= 4 ( y . -  Y.') ( y . -  ~2)) 
, , ~ , =  2 K , . K I + ( K ~ )  ~ 

Y~=Yo + -~- "&~ =Jo + - f  rC2o 

(3.8) 

where &=~(c~') are 'anpassungs' of inelastically scat- 
tered electrons. Also the fact that the expression under 
integration in (3.7) as function of Yh has a sharp maxi- 
mum near the points Re 3 ( 1 ' 2 )  with width ~ Im ~l,z) 
> 0 permits us to expand the integration limits to in- 
finity. 

Direct calculations, taking account of the residue 
theorem in the plane of the complex variable Yh, give 
the following expressions for the wave function of the 
inelastically scattered electrons 

[ 0 ,  z < z ,  (3.9) 
qTaKvh(r)---- ~ (l~ (2) ~a~,.(r) + ~a~,.(r), ~ > zo 
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~ . ~ ( r )  = a ~ m  5a~ ( -  1 ~ ~ ~  
~ k ' h  - -  ~"h 7 g'~ 

x i (~) • m × e p[ k,,,, ( r -  R~) + / k  s Ro] 

J¢~'"  "~"~'" "~'~>~ 2g~ ") +vo) v g h  : t ~ v g h "  t l h  - h '  - -  t ,  v g h  k - -  ' 

(h#h') 
- k s  )rt,.]}o , { ~  exp [-i(k(fl ) (o 

,,(~.r) _ 8rCmee bo 
~o,, - .... Vt~2~- ...... (k~) km)Z g 

x e x p [  - ~'¢~) --MAN" --k~°)]. (3.10) 

It follows from (3.7) and (3.9) that the state of the in- 
elastically scattered electrons inside a crystal is de- 
scribed by the superposition of two Bloch functions 

~aK~(r) , ¢paK~h(r) (3.11) 
o ' = 1 , 2  h = 0 , 1  

where the function c,) ~aK~(r) corresponds to the excita- 
tion of the Bloch wave with the wave vector k(~)= ~ v  

K~+K~6~o~)n on the ath branch of dispersion surface 
(or= 1.2). It should be mentioned that the Bloch func- 
tions (o, ~a~(r)  are equal to zero when z < z,. Physically 
this is connected with the fact that in the case of Laue 
diffraction the energy flux density of the Bloch electron 
wave for each branch of dispersion surface propagates 
in the z direction. 

Finally, making use of (3.9) and (2.16) and neglect- 
ing as usual (Kainuma, 1955) the dependence of the 
vector K~, on index v one obtains the intensity of Kiku- 
chi pattern" 

dI . ( m e e 2 )  2 

d~2K h- (Kh, t ) =  No cos 0~ (3~1)_3~z)) F.~(,)--]ii,~. 
k V h  - -  w i t  J 

× Z y y 
g , t  g ' ~ '  0",G" 

exp [ i t e , ( ~ ' - ~ " * ) t ] - e x p  [i,%(6~:)-a<.'),)t]i 

1 t t X h ~ U  h - -  v h ~ Vg ~ Vg ,  ] 

, . ( r )  , ~ ( ~ ' ) ,  
X " k g "  ~'kg 

• ' *  ( a )  

× {V~-h'Vh--h'S[Oq' - -k" )~  ~ ' ~  ~" '~*~ " ' g  ] , \ ~ h "  - -  a~g, j j 

- v;, '> + V o ) *  

, kW)) *] xS[(k~,'~)-k~ °) (k~ " ' ) -  o' 

- V;*--h,(-- 26~ ~,) + V'O) S[(M, ~) -- k<o ')) , (M,~, ') - k  s,(''))*] 

+ ( -  2)}, ,~) + Vo) ( -  2~,  ~') + Vo)* 
x S[(k~)-k~o °) ct,(~') lk(~')/*l/ (3.12) , ~.~t,~ll --~t~g, ) j j .  

Here the crystal structure amplitudes for inelastic scat- 
tering, S(qn, qw), are equal to 

S(qa, qw) 

= ~ exp [ - i ( q a -  q,,,)~j- M~(q,)-  M~(qh,)] • 
J 

1 
× - - ~ - .  {Zj-f~(q,,)f~(q~,) 

q~qh' 
+ ( ~  exp (--iq,r~j+iqh,r~,j)} (3.13) 

b =/: b ' 

[to be compared with an analogous expression for 
S(qh, qh') in Kainuma (1955)]. 

The structure of intensity dI/df2~h (Kh, t) is such that 
every term on the right of (3.12) under summation cor- 
responds to the inelastic scattering of the incident 
electron with simultaneous transition of the core elec- 
trons of the crystal atoms to all excited states. Both 
the initial and final states of the incident electron in- 
side a crystal are described by Bloch functions. 

Equations (3.12) and (3.13) completely solve the prob- 
lem of Kikuchi patterns in the two-beam approxima- 
tion, due to the inelastic scattering of the incident elec- 
tron by the inner shells of the crystal atoms, by taking 
the absorption for both the elastically and inelastically 
scattered wave into account in the Laue case. The cal- 
culation of the other mechanisms of inelastic scatter- 
ing such as scattering from phonons and valence elec- 
trons involves a change of S(q~, qh,) functions (see, 
for example Fujimoto et al., 1963 and Okamoto et al., 
1971) but the general structure of the intensity (3.12) 
remains unchangcd. Notice that in equation (3.12) for 
dI/dg2Kh (K~, t) the refraction effect of the inelastically 
scattered electron waves on the exit surface of a crystal 
is directly considered. 

4. Analysis of results 

Let us consider the behaviour of the intensity (3.12) 
as a function of ~', when the elastic waves do not suffer 
Bragg reflexion inside a crystal. Then, I~l > Ivol and the 
state of the elastically scattered electron is described 
by a plane wave (with accuracy up to terms of the order 
of Iv0/cq <~ 1). In this case the terms with g=g'=O and 
r = r ' =  1 in (3.12) give the basic contribution to the 
intensity of the inelastic waves. Neglecting as usual the 
difference of the vectors k~, ") and _gkm from K, and K s 
when considering the functions S(qh, qh') in (3.12), and 
assuming that 

S(q,, q,,,)= S(qn,, q~) 

(which is true for centro-symmetric crystals) the inten- 
sity distribution can be brought to the form 

dI  
- - -  (Kh, t ) = 4  COS O'nNo(mee2)2t exp (--#0t) 
df2Kn 

sh ( -  ..... 
× \ 21'/1-+-W2)[ch / _P,' 

[ #h--t [,2]/1 + W z ) 
2]/1-+ w z 

S(q,,,, qh') 1 + 2w 2 
x 2(1+w2) - + 2(1-Fw 2) S(ql,, qh) 

+(-1)___~hws(qh,,q,,))_sh ( /6,t .'~ 
1 + W 2 2 l / i ~ - ~  ] 

)] 
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sin [t%t]/1 + w 2 Re(v_i v;) '/2] 

tcntp l + w 2 Re (v'_lvl) '/2 

[ S(qh,, qh,) -- S(qh, qh) 
× 

2(1 + w z) 

+ 
1 + w  2 / J  ' " 

(4.1) 

In this expression the standard angle function w has 
been introduced 

e' sin 20~ 
w= - 2 Re (v'_~v'~) ~/2 - 21v'~v'~l" ri (4.2) 

where parameter r/= 0 ' - 0 ~  is the deviation from the 
exact Bragg angle 0j~; 'absorption distance' l ion= 
(Kh Im v;) -~ is connected with the 'normal '  absorption 

t 

and the anomalous absorption depends on/Zh = t% Im v,. 
When the electrons are scattered far from the true 
reflexion, i.e. Iwl>> 1, then (4.1) reduces to 

d l  
- - ( K h ,  t ) = 4  COS O'BNo(m~eZ)2t exp (--/tot) 
df2Kh 

x {S(q,,, qh)+ [1 sin (K,,t 1 
x,,t ~/1 + w z Re (v" lvl)l/z j 

[ S(qh,, q~,) - S(qh, ql,) 
X 

I 2(1 + w z) 

+ ( -  1)hw ]} 
1 +~w q-- S(qh, q,,) (4.3) 

and with accuracy up to a factor exp ( - p o t )  coincides 
with the corresponding expression for the Kikuchi pat- 
tern in the case of a non-absorbing crystal (Kainuma, 
1955). 

Now consider the situation when the electrons are 
scattered in a range of angles I wl < 1 near the true 
Bragg direction and, besides, the inelastically scat- 
tered waves propagate on one side of the incident spot. 
It is easy to see that in this case the cross-section of the 
inelastic scattering on the angle (K~'z) is negligibly 
small compared with the crosssection on the angle 
(K0~ K). This means that 

S(q~, qO<S(qo ,  qo) (4.4) 
and pair of lines is observed on the photographic plate: 
the 'defect' line dI/dl2~ o (K0, t) and the 'excess' line 
dl/df2,,~ (K~, t) whose profile in accordance with (4.1) 
is given by 

dI 
df2Ko (K0, t ) = 4  cos O'BNo(meeZ)2t exp (-/Zot)S(qo, q0) 

[(1 ' 
× /~.t121/1 + w 2 2 (1 + w 2) ) 

x c h (  /zht ) ____w ...... /Zht ) ]  
2 f i-+-w ~ I/1 + w 2 sh 

- -  2 v ' i + w  e 

1 sin (x0t ~/f + w ~ Re (v- lvi)l/2) } 

+ -2-(1 + w2) - ~Cot V I + ~  2 Re (v;  ~v'~) ~/2 ' 

(4.5) 

z,(w) 
10(oo) 

0"7 

0'4 

]o(W) 
Io(oo) 

4 3 2 1 0 -1 - 2  - 3  - 4  w 

3 

4 3 2 1 0 -1 - 2  - 3  - 4  

4x10-~ 

2 
/ 

/L 

W 

Fig. 1. Calculated profiles of Kikuchi lines for Si 440. The curves 1,2,3 refer to thicknesses of 400, 1800 and 3200/~,. The oscil- 
lating term is presented separately. The accelerating voltage is 80 kV. 
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d l  
dl2,a 
. . . .  (KI, t ) = 4  COS O'BNo(m~e2)Zt exp (--/tot) S(qo,qo) 

sh . . . .  Itnt ......... ~ Itht ca 

ltat/2 ~ 1 + w 2 2(1 + w 2) 

1 s i n ( t q t V l + w Z R e ( v ' _ x v ; )  l/z) 

2(1 + w 2) ........... ~',-t 1/1 + w2-Re (v '_ ~v;) ~/2 
. . . . . . . . .  . 

(4.6) 

If the incident spot falls near the middle of inelastically 
scattered (hkl)  and (h/~i) waves we have 

S(qo, qo)=S(q~, qO. (4.7) 

Then, the Kikuchi band is observed on the photo- 
graphic plate. Using (4.1) and (4.7), its profile can be 
expressed in the form 

dI 
dg-2z-----h-(Kh, t ) = 4  COS O'sNo(m~. eZ)Zt exp (--pot) 

[ s h (  p~t 

p~t w z ) 

x (S(q~,, qh) + ( -  1)" ~ w  S(qh, q~,)) 

- s h (  ltht ) (S(qh, qW) 

(-1)hw]/1 + - ~  S(qh, q~))] 

- ( - 1 )  . sin (xht 1/1 +w ~ Re (v'lv'2) '/z) 
~c~t ~ri q2-w2 Re (v'_. lvl) v2 

w } 
× ~ S(qj,, qw) • (4.8) 

In the dynamical theory of Kikuchi patterns the for- 
mulae (4.5), (4.6) and (4.8) are basic for an analysis of 
the contrast of lines and bands. It should be said that 
recently Okamoto et al., 1971; Ishida, 1970, 1971) in 
the case of the absorbing crystal the expressions for 
the profiles of lines and bands have been obtained by 
the solution of a phenomenological differential equa- 
tion for the intensities of inelastic waves along the crys- 
tal thickness. However, as is pointed out by Chukhov- 
skii (1968a), the phenomenological method men- 
tioned above does not permit one to consider explicitly 
the interference of inelastic waves in corresponding ex- 
pressions for intensity (the oscillating term). On the 
other hand the method of solution of the problem 
given in the present paper makes it possible to gen- 
eralize the results obtained by Kainuma (1955) for the 
case of a thick absorbing crystal within the framework 
of consistent dynamical theory. 

In Fig. 1 the line profiles are given for various thick- 
nesses t for the 440 reflexion of the Si single crystal. 
It is interesting that in the case of the thick crystal the 

Ii(w) 
. . . . . . . .  

Io(~) 
s=0"4- 

, . . ~ . . ~ /  oscillating term 

0'6[ 

02 
i 5 2 i 0 -i -2 -5 -i " a 3 2 i 

(a) 

Io(w) 
~o( ~ 

-1 - 2  - 3  .-4 

I~(w) 
Io(~) 

s-0'8 

/o(W) 
I0(o~) 

4 3 2 1 0 -1 - 2 - 3  -4 w 4 3 2 'i -i - 2 - 3 - 4  

(b) 

I,(w) lo(w) 
. . . . .  

I0(~) )0(~) 

% 
0"2 

s=l 

3 

:3 :~ i -:l -2 -3 -4 w 4 :3 2 i -~1 - ) - 3  -4 

(c) 
Fig. 2. Calculated profiles of the Kikuchi band of Si 220 for 

various values of s=S(qo, q~)/S(qo, qo) equal to (a) 0-4, (b) 
0"8 and (c) I. The cm'ves 1,2,3 refer to thicknesses of 400, 
1800 and 3200 A. Accelerating voltage is 80 kV. Suitable 
values for absorption coefficients p,, and extinction distance 
~l,=27r/KRe(v'_lv~) 1/2 are taken from Hirsch et al. (1965). 
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profile of the 'defect' line becomes asymmetric and the 
'defect' line turns into the 'excess-deficient' line as a 
result of anomalous absorption. The subsidiary maxima 
of Kikuchi lines, corresponding to the oscillation term 
in (4.5) are presented separately. 

Calculated profiles of the Kikuchi band for reflexion 
220 of a single Si crystal are plotted in Fig. 2. From 
these profiles it is clear that for an absorbing crystal, 
the band contrast is reversed at different thicknesses 
depending on the parameter s = S(q0, q,)/S(qo, qo). Par- 
ticularly for the thick crystal this is in accordance with 
the results of Okamoto et al. (1971) and Ishida (1971) 
and qualitatively explains the Kikuchi patterns ob- 
served by Shinohara et al. (1933), Boersch (1937), 
Pfister (1953) and Nakai (1970). Also, for a slightly 
absorbing crystal, when/Zht< 1 the band profile oscil- 
lates and the number (the amplitude) of oscillations 
varies directly (inversely) with the argument of w. 

Conclusion 

1. A consistent dynamical theory of Kikuchi patterns 
in two-beam approximation has been developed, 
which takes into account the absorption of both the 
elastically and inelastically scattered electrons in a 
crystal. 

2. The formulae for calculation of the intensity profiles 
have been obtained. 

3. The theory qualitatively explains the change of the 
Kikuchi patterns with increase in the crystal thick- 
ness. 

4. As a result of anomalous absorption of inelastically 
scattered waves the 'defect' line becomes 'excess- 
deficient' in a thick crystal. 

5. The oscillating term in the intensity distribution 
permits one to explain the fine structure of a Kiku- 
chi pattern. 

6. The method suggested in the present paper can be 
applied to the many-beam diffraction of inelastically 
scattered electrons in thick absorbing crystals. 
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Debye Temperatures of KC1, KBr and RbCI lay X-ray diffraction 
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Debye temperatures of KC1, KBr and RbCI have been determined by X-ray diffraction from room 
temperature up to about 800°K using methods due to Paskin [Acta Cryst. (1957). 10, 667-669] and Chip- 
man [J. Appl. Phys. (1960). 31, 2012]. The anharmonic contribution to the Debye O is shown to come 
essentially from thermal expansion. The plot of the reduced thermal expansion ~/~m/2 versus T/Aa20 2 
gives a common curve for all the three halides. Here, ~m/2 is the value of ~ at T= ½Tin, Tm being the melting 
point, A is the mean atomic weight and a the lattice constant. An equation relating ~, T and 0 for the 
alkali halides is established for the first time. The values of the root mean square amplitudes, (u2) 1/2, are 
calculated for the alkali halides from the equation and are compared with those of other workers. 

Introduction 

The temperature variations of the X-ray Debye tem- 
peratures of KCI and KBr have been investigated 

principally by Jaylakshmi & Viswamitra (KCI, 1970) 
and Baldwin, Pearman & Tompson (KBr, 1965). Reli- 
able investigations on RbC1 are not found in the litera- 
ture. 


